会员
机器人SLAM导航:核心技术与实战
张虎更新时间:2022-01-04 17:30:05
最新章节:附录B 习题开会员,本书免费读 >
机器人SLAM导航的一大痛点是很难做到理论与实战相结合,而本书可谓“百科全书”式讲解,可帮助硬件、软件、算法等不同领域的研究开发人员走出“调参”困境,终结面对硬件和深奥算法时的束手无策,加快算法在实际机器人产品的工程落地与系统性技术突破。本书以ROS编程、传感器、底盘等机器人开发所涉及的软硬件基础知识为切入点,逐步引出SLAM和导航两大领域核心算法,并结合Cartographer、LOAM、ORB-SLAM、VINS、CNN-SLAM、DeepVO、ros-navigation、TEB、RRT等热门开源算法对SLAM和导航的数学原理、代码框架及实操进行深度剖析。本书分为4篇,一共13章。编程基础篇(第1~3章),主要讨论ROS的核心概念、大型C++工程的代码组织方式以及OpenCV图像处理方面的基础知识,为后续学习打好必要的编程基础。硬件基础篇(第4~6章),通过对机器人传感器、机器人主机和机器人底盘的讨论,帮助缺少硬件基础的开发者系统认识机器人硬件,并更好地理解软件与硬件之间的协同关系。SLAM篇(第7~10章),以各个具体的SLAM系统实现为例,进一步介绍SLAM算法的代码框架以及核心算法的细节实现。自主导航篇(第11~13章),基于具体自主导航系统实现,剖析自主导航算法的代码框架以及核心算法的细节实现,并通过一个真实机器人案例向大家介绍应用SLAM导航技术进行开发的完整流程。
品牌:机械工业出版社
上架时间:2022-01-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行
机器人SLAM导航:核心技术与实战最新章节
查看全部- 附录B 习题
- A.2 Linux操作系统
- A.1 操作系统的概念
- 附录A Linux与SLAM性能优化的探讨
- 13.5 本章小结
- 13.4 基于自主导航的应用
- 13.3 运行自主导航
- 13.2 运行SLAM建图功能
- 13.1 运行机器人上的传感器
- 第13章 机器人SLAM导航综合实战
张虎
主页
同类热门书
最新上架
- 会员
华为MindSpore深度学习框架应用开发实战
全书从逻辑上共分3部分。第一部分由第1章和第2章组成,介绍深度学习的基础理论、MindSpore总体架构和编程基础。第二部分由第3~8章组成,介绍MindSpore框架各子系统的具体情况,包括数据处理、算子、神经网络模型开发、数据可视化组件MindInsight、推理、以及移动端AI框架MindSporeLite。第三部分由第9章和第10章组成,介绍使用MindSpore框架开发和训练的经典深度计算机13万字 - 会员
自动驾驶:人工智能理论与实践
本书参照产业界自动驾驶技术研发的基本流程,充分借鉴了产业界在自动驾驶技术领域中的实际研发经验,以高性能的智能小车和高度仿真的车道沙盘为实验教具和运行环境,深入浅出地讲解自动驾驶技术的原理与实际应用,为初学者打开一扇通往人工智能世界的大门。本书以帮助初学者如何从无到有地打造出具备自动驾驶功能的智能小车为主线,内容分为看车(了解自动驾驶)、造车(设计智能小车)、开车(收集训练数据)、写车(编写自动驾驶计算机14.9万字 - 会员
从零开始大模型开发与微调:基于PyTorch与ChatGLM
大模型是深度学习自然语言处理皇冠上的一颗明珠,也是当前AI和NLP研究与产业中最重要的方向之一。本书使用PyTorch2.0作为学习大模型的基本框架,以ChatGLM为例详细讲解大模型的基本理论、算法、程序实现、应用实战以及微调技术,为读者揭示大模型开发技术。《从零开始大模型开发与微调:基于PyTorch与ChatGLM》共18章,内容包括人工智能与大模型、PyTorch2.0深度学习环境搭建计算机12.8万字 - 会员
合成生物学智能化设计与应用
本书以人工智能技术在合成生物学领域的理论、方法及应用为主线,详细阐述人工智能在合成生物学不同层面设计中的应用进展,深入讨论人工智能在合成生物学实际应用中面临的挑战与困难。本书先概述合成生物学与人工智能基本概念以及发展简史,然后介绍人工智能技术在生物元件、生物模块、生物系统设计方面的应用,并通过案例展示了人工智能与合成生物学技术在生物医药领域的研究进展,最后分析了人工智能驱动合成生物技术的发展趋势,计算机23万字 - 会员
机器学习(第2版)
机器学习是人工智能的重要技术基础,涉及的内容十分广泛。本书涵盖了机器学习和深度学习的基础知识,主要包括机器学习的概述、统计学基础、分类、聚类、神经网络、贝叶斯网络、支持向量机、文本分析、分布式机器学习算法等经典的机器学习基础知识,还包括卷积神经网络、循环神经网络、生成对抗网络、目标检测、自编码器等深度学习的内容。此外,本书还介绍了机器学习的热门应用领域推荐系统以及强化学习等主题。本书深入浅出、内容计算机30.2万字 - 会员
机器学习的算法分析和实践
本书是一本全面介绍机器学习方法特别是算法的新书,适合初学者和有一定基础的读者。机器学习可以分成三大类别,监督式学习、非监督式学习和强化学习。三大类别背后的算法也各有不同。监督式学习使用了数学分析中函数逼近方法、概率统计中的极大似然方法。非监督式学习使用了聚类和贝叶斯算法。强化学习使用了马尔可夫决策过程算法。机器学习背后的数学部分来自概率、统计、数学分析以及线性代数等领域。虽然用到的数学较多,但是最计算机7.4万字 - 会员
被算法操控的生活:重新定义精准广告、大数据和AI
这是一个“算法世界”:建立在数据之上的算法指导社会的运行、决定我们能在网上看到什么;它更是自动驾驶、智能管家、未来医疗以至智慧城市的基石。如果我们不了解算法如何使用数据,就无法知道人工智能将如何改变我们的生活。通过采访谷歌和剑桥分析公司的数据专家、亲自模拟高科技巨头的算法模型,萨普特带我们直击智能产品背后的秘密、思考数字科技给社会带来的风险。我们对科技和互联网的日益依赖,使数据研究者能够收集与我们计算机14.8万字 - 会员
奇点到来:AIGC引爆增长新范式
增长是企业利用计算机、大数据、人工智能等新技术实现经营增长的新思路和新方法,本书作为该领域的入门级读物,介绍了AIGC在增长领域的技术和实战应用。本书分为4部分,第1部分、第2部分、第4部分主要针对有兴趣了解AIGC背后技术原理、增长模式的变化以及截至2023年3月业界、学术界的最新技术进展的读者;第3部分包含AI的基础知识、基础模型,并从实战应用角度介绍作为应用开发者如何高效上手与利用最新的开源计算机21.9万字 - 会员
大模型实战:微调、优化与私有化部署
本书深入浅出地介绍了现代大型人工智能(ArtificialIntelligence,AI)模型技术,从对话机器人的发展历程和人工智能的理念出发,详细阐述了大模型私有化部署过程,深入剖析了Transformer架构,旨在帮助读者领悟大模型的核心原理和技术细节。本书的讲解风格独树一帜,将深奥的技术术语转化为简洁明了的语言,案例叙述既严谨又充满趣味,让读者在轻松愉快的阅读体验中自然而然地吸收和理解AI计算机15.8万字