
会员
因果推断导论
更新时间:2023-11-07 17:37:21
最新章节:封底开会员,本书免费读 >
本书以构建因果推断基础知识框架,主要从Rubin因果模型、Pearl因果模型、基于图模型的因果效应计算、因果结构学习、因果机器学习五个篇章为大家介绍智因果推断的基础理论、模型、方法、和前沿应用,引领学生步入充满趣味与挑战的因果推理领域。
品牌:机械工业出版社
上架时间:2023-08-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行
因果推断导论最新章节
查看全部- 封底
- 内容简介
- 文后
- 参考文献
- 13.3 拓展阅读
- 13.2 基于局部因果结构的因果效应估计
- 13.1 基于全局CPDAG的因果效应估计
- 第13章 基于CPDAG的因果效应估计
- 第五部分 因果结构未知情形下的因果效应估计
- 参考文献
同类热门书
最新上架
- 会员
AI时代生存手册:零基础掌握DeepSeek
本书将带你深入探索AI“神器”——DeepSeek的无限潜能,带你从零开始,轻松掌握AI的核心应用。通过学习本书,你将轻松上手DeepSeek,开启智能生活新篇章;通过学习本书,你将学会用DeepSeek大幅提升工作效率;通过学习本书,你将学会如何让DeepSeek成为你的职场超级助手;通过学习本书,你将学会如何利用DeepSeek激发自己的创作灵感,打造爆款内容和个人品牌;通过学习本书,你将学会计算机7.2万字 - 会员
秒懂AI设计:人人都能成为设计高手
随着技术的发展,AI与人们的生活、工作结合得越来越紧密。在设计领域,AI已成为设计师的好帮手。借助AI,设计师可以更好、更快地创作出令人惊艳的作品。本书共9章。第1章系统地介绍了什么是AI设计、有哪些AI设计工具,以及如何撰写提示词让AI生成符合需求的设计作品;第2~9章通过8个实用模块、40多个常见的设计场景,详细介绍了AI在头像和表情包设计、图片处理、社交媒体配图、视频制作、插画绘制、电商设计计算机3万字 - 会员
揭秘大模型:从原理到实战
本书从技术角度深度解析大模型的原理,从大模型的基础概念及领域发展现状入手,概述大模型的理论基础,介绍OpenAIGPT、清华大学GLM、MetaLlama等主流大模型的技术原理,并从大模型参数高效微调、大模型指令微调、大模型训练优化和大模型推理优化等多角度解析大模型背后的技术,带领读者全方位掌握大模型的原理和实践方法。本书最后介绍私有大模型的构建,手把手指导读者做技术选型并搭建自己的私有大模型计算机12.2万字 - 会员
秒懂AI辅助论文写作
本书是一本深入探讨AI在论文写作中应用的指南。本书通过九章内容,全面介绍如何在论文选题、前言写作、大纲写作、正文写作、数据分析、摘要写作、结语撰写、文稿翻译与润色、答辩PPT制作、查重投稿等环节借助AI提高效率和质量。本书不仅讨论了AI的使用伦理,还针对论文写作的具体问题,提供了提示词示例(已全部收录到秋叶AI智能鼠标平台),为论文写作提供了广阔的视角和新的方法。本书可作为缺少学术论文写作经验的大计算机7.3万字 - 会员
AIGC革命:Web 3.0时代的新一轮科技浪潮
本书立足于AIGC技术前沿与发展趋势,全面阐述了AIGC的概念内涵、底层技术与应用场景,详细梳理全球科技巨头在AIGC领域的战略布局,并辅之以大量生动有趣的案例,深度剖析AIGC在各行业领域的应用场景,旨在引导读者真切感受AIGC革命浪潮蕴含的商业创造力。全书分为五个部分,共18章。第一部分主要厘清AIGC技术的起源与演变,阐述席卷全球的AIGC背后的技术架构以及AIGC的应用场景;第二部分重点剖计算机11.4万字 - 会员
秒懂AI提问:让人工智能成为你的效率神器
我们在运用AI的时候,有时得不到自己想要的回答,于是责怪AI不够智能。我们容易忽略的是,AI的回答质量往往取决于提问的质量。《秒懂AI提问:让人工智能成为你的效率神器》系统地介绍了20种向AI提问的有效方法,用这些方法可以让AI给出高质量的回答。在介绍提问方法时,本书紧扣日常工作和生活,并通过对比让读者直观感受不同提问方法的效果,最后引出更多场景下的应用,让读者真正学以致用。《秒懂AI提问:让人工计算机5.4万字 智能汽车软件功能安全
这是一本从实践角度系统且深入地讲解智能汽车软件功能安全和智能汽车软件研发的著作,得到了中国工程院院士李克强等13位产业界和学术界专家的一致推荐。作者在功能安全领域深耕10余年,有扎实的理论基础、丰富的实践经验,用挖掘本质的思维方法来撰写本书,从研发体系、架构设计、开发流程、开发方法、安全措施、创新研究等维度对智能汽车软件功能安全做了深入的讲解。全书共11章,分为3个部分。第一部分(第1~3章)智能计算机25.9万字- 会员
Keras深度学习与神经网络
本书从人工智能导论入手,阐述人工智能的发展及现状,重点介绍了机器学习和神经网络基础、反向传播原理、卷积神经网络和循环神经网络等内容。本书内容由浅入深,循序渐进,从神经元和感知机入手,逐步讲解深度学习中神经网络基础、反向传播以及更深层次的卷积神经网络、循环神经网络。本书知识体系完整,内容覆盖面广,介绍了深度学习中常用的模型和算法,助力读者多方位掌握深度学习的相关知识。本书可作为高等院校计算机等相关专计算机11万字 - 会员
《机器学习》习题参考
本书配套周志华教授所著的《机器学习》教材,通过大量习题考查读者对机器学习相关知识点的理解与掌握。全书分为两个部分:第一部分习题对应《机器学习》第1~10章的内容,包括绪论、模型评估与选择、线性模型、决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习;第二部分包含6章应用专题,通过综合题的形式对知识点进行多角度考查,包括线性模型的优化与复用、面向类别不平衡数据的分类、神经网络计算机19.3万字