![全国大学生数学竞赛辅导指南(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/714/26943714/b_26943714.jpg)
第五届全国大学生数学竞赛预赛(2013年非数学类)
试题
一、解答下列各题(本题共4个小题,每题6分,共24分)
1.求极限.
2.证明广义积分不是绝对收敛的.
3.设函数y=y(x)由x3+3x2y-2y3=2所确定,求y(x)的极值.
4.过曲线上的点A作切线,使该切线与曲线及x轴所围成的平面图形的面积为
,求A点的坐标.
二、(12分)计算定积分.
三、(12分)设f(x)在x=0处存在二阶导数f″(0),且,证明:级数
收敛.
四、(10分)设|f(x)|≤π,f′(x)≥m>0(a≤x≤b).证明.
五、(14分)设Σ是一个光滑封闭曲面,方向朝外.给定第二型的曲面积分
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0031_0009.jpg?sign=1738826566-S5CH0GIgZwatwMFZilFYc3Kym9xsCPhM-0-8520993661802f362dda11ce38d2b89e)
试确定曲面Σ,使得积分I的值最小,并求该最小值.
六、(14分)设,其中a为常数,曲线C为椭圆x2+xy+y2=r2,取正向.求极限
.
七、(14分)判断级数的敛散性,若收敛,求其和.
参考答案
一、1.解 因为.
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0031_0014.jpg?sign=1738826566-1pKphynQdcYU2khxhovwQk05r52GgMin-0-a26873bb00ce9ecf18acaaaa7bd8f55b)
2.证 记,只要证明
发散.因为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0032_0004.jpg?sign=1738826566-A8S7ojIirx5nzboCIUXYhy3z79nro10E-0-17e832a7cd02ab89207fffefd1172368)
而发散,故
发散.
3.解 方程两边对x求导,得
3x2+6xy+3x2y′-6y2y′=0,
故,令y′=0,得x(x+2y)=0⇒x=0或x=-2y.
将x=0和x=-2y代入所给方程,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0032_0008.jpg?sign=1738826566-6pt8JamPPPQ1yGho5OfryqJJmkZhy8UR-0-ca83ab5b3f47343e254b750fc4d5ecdd)
又
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0032_0009.jpg?sign=1738826566-bYD124Eu5E7pEzvLNKqzWHvBp5LsxOtw-0-2b0f16c1d5b0bdb1a66b307c00d399ad)
故y(0)=-1为极大值,y(-2)=1为极小值.
4.解 设切点A的坐标为,曲线过A点的切线方程为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0032_0011.jpg?sign=1738826566-4wlOzj92W7EPWhHgBBY0I7sfEqZN6T3D-0-e34e70bbbaf7b31535658331a0f0cdac)
令y=0,由上式可得切线与x轴交点B的横坐标x0=-2t.设A在x轴上的投影点为C.如题4图所示平面图形△ABC的面积-曲边梯形OCA的面积
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0032_0012.jpg?sign=1738826566-Kxw5esjtW9D0vs26sK2bqqNsTf0div38-0-79522c5728263e90410bbb6b010a3055)
故A的坐标为(1,1).
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0032_0013.jpg?sign=1738826566-YU9ETqTjEa2XCnU8ZBDJjf2r7i62T4Th-0-713a3ba53441d53e778ff05624b4e421)
题4图
二、解
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0032_0014.jpg?sign=1738826566-vqo8G6ONCetC0Rc8gOCZVY8PJvB3Wj6D-0-4772adaaf429ccfeb9dd654896497cc3)
三、证 由于f(x)在x=0处连续,且,则
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0033_0002.jpg?sign=1738826566-vjuukyBnfPcj1w9YY25akSHuooHRotwW-0-884265b5fc55f3ab0f56bf2156d540dc)
应用洛必达法则,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0033_0003.jpg?sign=1738826566-tEAJ5cJdlEKyYceZdItP9eHZd30AI3Ov-0-706ad15b212b5f439b46f02e6ecc1d61)
所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0033_0004.jpg?sign=1738826566-zgWOaH5NXYSt5bxjHqtkxC4ezpYRZQyv-0-7776605e23a660c2978ae41b9ad43ed0)
由于级数收敛,从而
收敛.
四、证 解法1 因为f′(x)≥m>0(a≤x≤b),所以f(x)在[a,b]上严格单增,从而有反函数.
设A=f(a),B=f(b),φ是f的反函数,则
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0033_0007.jpg?sign=1738826566-u8dCX1DXCXYoxf9SHnUBg1HTsnQjn2JV-0-d32aa6eab05ff4126367c1090fa4a402)
又f(x)≤π,则-π≤A<B≤π,所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0033_0008.jpg?sign=1738826566-yVouD8h7XyowvFaQTczL7wRacsOO0QYa-0-720f62376b6d344bf5264b3af5640f8f)
解法2
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0033_0009.jpg?sign=1738826566-jf85kOKGXDLFvBgfMx6pSEeo0xs89IMC-0-f6434e36c513c4ec570815615bfe4816)
五、解 记Σ围成的立体为V,由高斯公式,
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0033_0010.jpg?sign=1738826566-kcLcJfVILAGadm8kXqqAxO9Sjrtu0prw-0-daa9619f248d498593333910a28287e0)
为了使I达到最小,就要求V是使得x2+2y2+3z2-1≤0的最大空间区域,即
V={(x,y,z)|x2+2y2+3z2≤1}.
所以V是一个椭球,Σ是椭球V的表面时,积分I最小.
为求该最小值,作变换
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0033_0011.jpg?sign=1738826566-5l2uxKoKgXLe26ehUuwJ5KGfyUs5jqmN-0-6e4b994f90faa292fd8c2bf638d8d993)
则,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0033_0013.jpg?sign=1738826566-Zx6x8QXbyTyZq26LuQGG3MlBK0txLDYV-0-5585f7d2b90ea7e799de1a597128d707)
使用球坐标变换,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0033_0014.jpg?sign=1738826566-gS7hvycS0pO8DRRxnChTmaMRZn5gXrwC-0-2bb344b3a40a3c25b33612e2bd9ef67b)
六、解 作变换
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0033_0015.jpg?sign=1738826566-XEjPHPda6SLHqOCKgkEwHo5wTfFX50eg-0-ae1eb2f467d917d2933585267665c8a5)
曲线C变为uOv平面上的曲线,也是取正向,且有x2+y2=u2+v2,ydx-xdy=vdu-udv,
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0034_0002.jpg?sign=1738826566-ZBmZE6KSXrlcaBOqlKwTAjd5okV9xkzM-0-d0d3f829657fe99fd77d061710230b24)
作变换
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0034_0003.jpg?sign=1738826566-urPsI8Yi9wMdrdWaLrq2gdYPS66sulKc-0-82c78488a2cec9fda9890042f6f44966)
则有,
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0034_0005.jpg?sign=1738826566-EisMceFS8xRzdMDQ8oWmkPj65HYHfTUs-0-494707f7e31a99a61b1dc3a5e885356d)
其中.
因此当a>1和a<1时,所求极限分别为0和+∞.
而当a=1时,
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0034_0007.jpg?sign=1738826566-KCeQzOeHckJezhPsrfsJ9i2E6woaZWW6-0-6ea172da0591a96c8216da3f75dcfff9)
故所求极限为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0034_0008.jpg?sign=1738826566-7mZqAZYMYxHFd9RGPhqHpBfsaLdMLveS-0-95576e249fe5036141bf70b97bad14ae)
七、解 (1)记.因为n充分大时,
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0034_0010.jpg?sign=1738826566-FkE2nfcSXeOmR5xNbooyvnHVfkHkOQhg-0-ad321212c841b46e8c8a92e43951e504)
所以,而
收敛,所以
收敛.
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0034_0014.jpg?sign=1738826566-RSOkIpAnO0YztChdvF6vhfjjhPIsLWvs-0-87875093f4c3bca9cadecd87b062ea63)
因为0<an<1+lnn,所以且
.故
.于是
.