![全国大学生数学竞赛辅导指南(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/714/26943714/b_26943714.jpg)
第1部分
八届预赛试题及参考答案
首届全国大学生数学竞赛预赛(2009年非数学类)
试题
一、填空题(本题共4个小题,每题5分,共20分)
(1)计算,其中区域D是由直线x+y=1与两坐标轴所围三角形区域.
(2)设f(x)是连续函数,且满足,则f(x)=________.
(3)曲面平行平面2x+2y-z=0的切平面方程是________.
(4)设函数y=y(x)由方程xef(y)=eyln29确定,其中f具有二阶导数,且f′≠1,则.
二、(5分)求极限,其中n是给定的正整数.
三、(15分)设函数f(x)连续,,且
,A为常数,求g′(x)并讨论g′(x)在x=0处的连续性.
四、(15分)已知平面区域D={(x,y)|0≤x≤π,0≤y≤π},L为D的正向边界,试证:
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0013_0008.jpg?sign=1739263652-lOFBC8X3hQdIPchb3OhoCidBJwyRve1S-0-02170cd29c1d5bf945bb8707b238c117)
五、(10分)已知
y1=xex+e2x,y2=xex+e-x,y3=xex+e2x-e-x
是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.
六、(10分)设抛物线y=ax2+bx+2lnc过原点,当0≤x≤1时,y≥0,又已知该抛物线与x轴及直线x=1所围图形的面积为.试确定a,b,c,使此图形绕x轴旋转一周而成的旋转体的体积V最小.
七、(15分)已知un(x)满足
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0013_0010.jpg?sign=1739263652-nKsbWwTMNjddbjFIPEupBRckZib7SEzv-0-66dce342f5839f5a7c53e0fc411a4635)
且,求函数项级数
之和.
八、(10分)求x→1-时,与等价的无穷大量.
参考答案
一、(1).(2)
.(3)2x+2y-z-5=0.(4)
.
二、解
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0004.jpg?sign=1739263652-7gmvjiyeaA6pXksA0KT63zyJXZeQg9oP-0-0a21c5f058893a457f8d1d7e34bd83cd)
其中大括号内的极限是型未定式,由洛必达法则,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0006.jpg?sign=1739263652-82webe9GFWZZfmGj2GylTzthLxjHI3J6-0-e47504a7236ff4f60c6b36929cf264da)
于是
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0007.jpg?sign=1739263652-LdyfhWH5ji7YKmv7p3bGj7fcUr7F7t8o-0-77782f15c11e8c0fa4165818abe60c5c)
三、解 由题设,知f(0)=0,g(0)=0.令u=xt,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0008.jpg?sign=1739263652-XGAglkTz6EzkX9bFKpHTouBUvPhq1MFO-0-1d411822ce212801f486042654e51f3e)
而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0009.jpg?sign=1739263652-Q9dLdyI6DUjw86U5vST8pudZlj1FxKfe-0-bd5197a9aa3c09664d3444f13f318e91)
由导数的定义有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0010.jpg?sign=1739263652-5BL3kjAHruHSSErx1YziWawoSprLA2ZN-0-c0ed6ee41ca8d68f99881e1b5bc38ae9)
另外
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0011.jpg?sign=1739263652-ERlGiYK18lJrWpg0j0DCS5IrI4N5ePN7-0-7dcf125d858e4f7c823597de8baa09ca)
从而知g′(x)在x=0处连续.
四、证法1 由于区域D为一正方形,可以直接用对坐标曲线积分的计算法计算.
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0012.jpg?sign=1739263652-4BWLrdqvy6AfY0YBOA0PRgi1777LlZHB-0-47c8fc3a6fad0e3295d6b526eee75971)
所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0013.jpg?sign=1739263652-dvgr758UxIgx9q8pKKOAXnwuakUI8Sm3-0-58e8640715339e060a1f7b8e149a7a94)
(2)由泰勒公式得esinx+e-sinx≥2+sin2x,故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0014.jpg?sign=1739263652-fB1WjomrdGMRCEGRNDB2nYmLdEec4wFv-0-640ec628f8c9bef96906d8a2a7337129)
证法2 (1)根据格林公式,将曲线积分化为区域D上的二重积分
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0015.jpg?sign=1739263652-txlBE99CNnt37vJgCuzEwL5HnVwX77ZX-0-4b93ee034eb049aeb254a53bd7830962)
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0001.jpg?sign=1739263652-jv64QdxY0Q34Z7Tql9pZX9HwW1DNaWQg-0-78492532d48ab7f5f44de5ad89be4f85)
因为关于y=x对称,所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0002.jpg?sign=1739263652-mjqXjl3bhAM7F3ehri1NRzjcrQNwLvCS-0-85e1b8e2b179f3e1127cc01a6de5276d)
故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0003.jpg?sign=1739263652-ayro45s2XTzDbl74E6NN6dZ0ItyNxzI0-0-b6697d2acb9bfde536351ebe446e49fa)
(2)由,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0005.jpg?sign=1739263652-v38hLB6Dy6qCTAOpBNWdeSnBr7seaKZM-0-97487ac86821d995d25b9c14f663649f)
五、解 根据二阶线性非齐次微分方程解的结构的有关知识,由题设可知2y1-y2-y3=e2x与y1-y3=e-x是相应齐次方程两个线性无关的解,且xex是非齐次方程的一个特解,因此可以用下述两种解法.
解法1 设此方程式为
y″-y′-2y=f(x).
将y=xex代入上式,得
f(x)=(xex)″-(xex)′-2xex=2ex+xex-ex-xex-2xex=ex-2xex,
因此所求方程为y″-y′-2y=ex-2xex.
解法2 设y=xex+c1e2x+c2e-x是所求方程的通解,由
y′=ex+xex+2c1e2x-c2e-x,y″=2ex+xex+4c1e2x+c2e-x,
消去c1,c2得所求方程为y″-y′-2y=ex-2xex.
六、解 因抛物线过原点,故c=1.由题设有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0006.jpg?sign=1739263652-sgqs6oVD2ajlLuvLcp3mHUKspqHye8Vt-0-97fd20a52f169af05021773fd35a516f)
即,而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0008.jpg?sign=1739263652-6C4sAtWQEOPcwudFQ0IMXkw3KFKv6c9D-0-874f68a60ef28b65f09a784b5f9cf7e8)
令
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0009.jpg?sign=1739263652-lxwpCBulTeoDzfcI7uMwZg57EPTXS1oS-0-e80f4e28117dbecd42a48b4fa9d0486d)
得,代入b的表达式得
,所以y≥0.
又因及实际情况,当
,
,c=1时,体积最小.
七、解 先解一阶常系数微分方程,求出un(x)的表达式,然后再求的和.
由已知条件可知是关于un(x)的一个一阶常系数线性微分方程,故其通解为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0017.jpg?sign=1739263652-GiPcUwLvf35XBeAIVmUQDNS6nW9ytXrJ-0-ef0a3b9a43449d8b4cf8a2f5deb57221)
由条件,得c=0,故
,从而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0020.jpg?sign=1739263652-HvgUjEwfB3lCvR0F4HZNgMqhNe9juj5a-0-ffb429b4f491a20ae2c01498f86e2b6c)
,其收敛域为[-1,1),当x∈(-1,1)时,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0002.jpg?sign=1739263652-dKVbgcjdCupBJoyYf0Q3fg2zqJ4edGA6-0-a3d04fa364ac25b4f9fe2fb579e2a2cd)
故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0003.jpg?sign=1739263652-Q7O6VEflQfHbShFpMKdALFhK2GfOM2Pr-0-a784fe7cc493792e457fbae509ed5cd3)
当x=-1时
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0004.jpg?sign=1739263652-rYx4K6WE9sAoKwve7OOQzBF8swVVATTq-0-78caa6435ec746c102508e0f197f8cd9)
于是,当-1≤x<1时,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0005.jpg?sign=1739263652-GYVZ8J2I95UzHyTyQ0EG9Aure3rLAJQ3-0-66c675bb0e3e3ecc67d02b6ecd5e11ec)
八、解 ,故有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0007.jpg?sign=1739263652-CV5vJQhmy0r0welkEmrqWLqyrdBzVAZ1-0-933a34383a4a84d410c3e87ec3c5a6d9)