![曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/719/27031719/b_27031719.jpg)
第2章 一维势场中的粒子
2.1 复习笔记
一、一维势场中粒子能量本征态的一般性质
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image150.png?sign=1738981379-tnr1933QCjQu9Kda4SZU47lAN3nyFBuW-0-ffc8626ed3854c64a9541f1c767de28f)
此即一维粒子的能量本征方程.以下定理1到4,不仅对一维问题成立,对于三维问题也同样适用.
1.定理l 设φ(x)是方程(1)的一个解,对应的能量本征值为E,则φ*(x)也是方程(3)的一个解,对应的能量也是E.
2.定理2 对应于能量的某个本征值E,总可以找到方程(1)的一组实解,凡是属于E的任何解,均可表示为这一组实解的线性叠加.
3.定理3 设V(x)具有空间反射不变性,V(-x)=v(x).如φ(x)是方程(1)的对应于能量本征值E的解,则φ(-x)也是方程(1)的对应于能量E的解.
(1)空间反射算符P
空间反射算符P定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image151.jpg?sign=1738981379-9EvfVvYZmYLKVAmECRGPqH4GWIjYvG3X-0-d284c3b62b1ccee96bc07e84fe4e9c90)
(2)偶宇称与奇宇称
如果对应于某能量E,方程(3)的解无简并,则解必有确定的宇称(parity)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image152.png?sign=1738981379-C4Y6yPq7PWs9lBgNp1nMERqwWwf50CDK-0-f9717ab20164b98945395617cd407487)
对于上式中C=+1的解
称为偶字称(even parity)解.
对于C=-1的解
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image154.jpg?sign=1738981379-NRrbpK17mPrOc2vfuO9jbbyyJPu3LfzX-0-8e8fa6578e48a669f1f3afa8666af4ed)
称为奇宇称(odd parity)解.
4.定理4 设V(-x)=V(x),则对应于任何一个能量本征值E,总可以找到方程(3)的一组解(每一个解都有确定的宇称),而属于能量本征值E的任何解,都可用它们来展开.
5.定理5 对于阶梯形方位势
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image155.png?sign=1738981379-3XE8blbOy1WvXht3OSy00KuBw4dMAPTi-0-074d59c019fde5303092c00a406927d6)
(V2—V1)有限,则能量本征函数φ(x)及其导数φ'(x)必定是连续的(但如
7.定理7 设粒子在规则(regular)势场V(x)(V(x)无奇点)中运动.如存在束缚态,则必定是不简并的.
二、方势
1.无限深方势阱,离散谱
(1)无限深方势阱本征能量
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image159.png?sign=1738981379-pkVuk8IA9tSEHLGmP5PC96lFaucUHp8j-0-4cdd1de102540724b612ad314f6b7fff)
该本征能量表达式说明说明:并非任何E值所相应的波函数都满足本问题所要求的边条件,一维无限深方势阱中粒子的能量是量子化的,即构成的能谱是离散的(disorete).
(2)无限深方势阱本证波函数
归一化波函数表示为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image160.jpg?sign=1738981379-7bRdKexg2IRtd6ZCXNTJCFSW65nvTqqb-0-54ebf76eadd3666425c8cd91260bca44)
2.有限深对称方势阱
设
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image161.jpg?sign=1738981379-wOQ5QDPM4TxygIKr4ZSqnF4G5TmYIjtW-0-3636de0b59ecde88d90b44492374a3ff)
a为阱宽,V0为势阱高度.以下讨论束缚态(0<E<V0)情况.
束缚态能量本征函数(不简并)必具有确定宇称,因此只能取sinkx或coskx形式.
(1)偶宇称态.
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image162.png?sign=1738981379-3ENxtBWkFHqogCcUefQR4J6U7elMVyj4-0-3097fe11f2d6244d065aa71f24d74ab5)
引进无量纲参数
有
(2)奇宇称态.
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image165.jpg?sign=1738981379-k6drfNHDzc9QDBR7SgAzVGVkQNt3m46C-0-4f3442d292adf5fb90550d0bbda7b152)
同(1)可得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image166.png?sign=1738981379-CFJ1tRc6xOvcne2Y5qITJdsB7wEULMus-0-e6d3e05cccb54fba0fbd12f433adc6eb)
只当
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image167.jpg?sign=1738981379-M2AkznmpeYMeIGJQ1SR8rGlVjDi5kD8P-0-b39b25dde70bb76da2c5159b1da4a2fa)
时,才可能出现最低的奇宇称能级.
3.束缚态与离散谱
只当粒子能量取某些离散值E1,E2,E3,…时,相应的渡函数φ1(x),φ2(x),φ3(x),…才满足束缚态边条件:|x|→∞处,φ(x)→0.这些能量值即能量本征值,相应波函数即能量本征函数.
4.方势垒的反射与透射
设具有一定能量E的粒子沿x轴正方向射向方势垒(图2-1)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image168.png?sign=1738981379-dPttMjcejYHpyC3wRTKBQTBeReoHlff1-0-69b58e9a496c21ecae7d641666544719)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image169.jpg?sign=1738981379-ZntsObeaMkwdtURacwxRWmXir7YQVAST-0-c3b4f38e1c4f7c712e2a9b9fcc1f0e12)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image170.jpg?sign=1738981379-33suZzOTZpAE92Yib3Gyo3FsvrkwI4s2-0-146ff89732e022273aa707bfba45f320)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image171.jpg?sign=1738981379-WMhi8txdlzNoJRj75C1Y7P5O0jo2j0Wa-0-8a22556c83fb2e3e32b33ba1d669dc1b)
图2-1 一维方势(V0>0)
(a)方势垒的反射与透射.E<V0
(b)方势垒的反射与透射,E>V0,
(c)方势阱的反射,透射与其振,E>0
(1)E<V0时的情况
透射系数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image172.jpg?sign=1738981379-JUPdYGtJI26C8y9va87iQ5dSF2UdZHLU-0-988a223989fd45ede9baeceff7ce7597)
反射系数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image176.jpg?sign=1738981379-vWpbo5ra1mWfCFceijOKhLjz7IDb5W40-0-4e2292013b0a874d2685727da1e77882)
(2)E>V0时的情况
透射系数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image177.jpg?sign=1738981379-XhU1VpVG14lacNt7as9l59D9Y6onxv7p-0-b08a30ed01bae36b09707462adeddba0)
5.方势阱的反射、透射与共振
方势阱对应的透射系数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image179.jpg?sign=1738981379-4Kb4sJdozU6XKbnqxySaaHB59b71MUbY-0-4c05eb3f77f38c1e5a1bd8523ddafd15)
(3)
由式(3)可以看出,如,则一般说来T值很小,除非入射粒子能量E合适,使sink'a=0,此时,T=1(反射系数|R|2=0),这现象称为共振透射.它出现的条件是:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image182.png?sign=1738981379-kpOHPk3496CdllGm2QTLrEwaTJYrK1fX-0-c5b5aa51874b5c4e8d2cecdc27b7fca7)
共振时的能量
(4)
式(4)所确定的E,称为共振(resonance)能级.
三、δ势
1.δ势的穿透
设质量为m的粒子(能量E>0)从左入射,碰到δ势垒(图2-2)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image184.jpg?sign=1738981379-y9yrabK1LXGOmf4Qr8RWxNmvfGdpEKA1-0-960d8d3565e78b0d9cbae887aa976ff6)
图2-2
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image185.png?sign=1738981379-I0Bt20vNZBGVnunV74Q073CGaWsQ4BmD-0-67510d854dd5335004e9391dfe427145)
(3)式称为δ势中φ'的跃变条件.
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image186.jpg?sign=1738981379-81m6vVsTvS1Q0WKUjclrNdVocrX7Q1Sc-0-818e9c7fa3c8047189408f1fada8841a)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image188.jpg?sign=1738981379-ZwEBqO4vVMqLvyJxDcjyMqaEMIRNevvK-0-cce615998bf6c37a23269c858f2c5b92)
2.势阱中的束缚态
要求束缚能量本征态(不简并)具有确定字称.以下分别讨论.
(1)偶宇称态
归一化的束缚能量本征态波函数可表示为(取C为实数)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image189.jpg?sign=1738981379-f1swy9LN1XC0BiCMJGaKwKLMEw5j4P9W-0-8bd16d7949fd3291d886ac39e99dc5c0)
(2)奇宇称态
波函数应表示为:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image190.jpg?sign=1738981379-2hHBg3LbBACqvVmmuZFtNnwNLJKCHTjS-0-c924467d38b476883fa14d30f823eb0a)
3.δ势波函数微商的跃变条件
δ势波函数微商的跃变条件如下:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image191.jpg?sign=1738981379-xEMq5Hsds7CiiR4gXWogvlBqKDyt11g2-0-ccc73a711564e089776a91169ac6911c)
四、一维谐振子
1.一维谐振子本征能量
此即谐振子的能量本征值.可以看出,谐振子的能级是均匀分布的,相邻的两条能级的间距为.
2.一维谐振子本征波函数
一维谐振子波函数常用的关系式如下
其中。