![信息融合中估计算法的性能评估](https://wfqqreader-1252317822.image.myqcloud.com/cover/245/27741245/b_27741245.jpg)
3.2 经典UCM方法
3.2.1 问题描述
对于多雷达/声呐场景,在二维极坐标系下,量测信息包括目标的径向距离和方位角。在传感器坐标系下的径向距离和方位角分别为
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0033_0001.jpg?sign=1739241538-wAVQksSUaJSXI0nZ7kPL4qLCHlJoJ0KV-0-f859b765f10350a6c5d0e47afc627bf5)
式中,r和β 分别为目标真实的径向距离和方位角;上标“l”代表第l个传感器(l=i, j);和
分别为第l个传感器径向距离和方位角的量测噪声,且彼此独立,其均值均为零,方差分别为
和
。则协方差矩阵为
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0034_0005.jpg?sign=1739241538-6sMryAxojWfZcTMmVELgnA692kKPzoR3-0-88505f8ef866a7b7fa87f9e6575930db)
假设x、y分别为目标在x、y方向上的真实位置信息,则有
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0034_0006.jpg?sign=1739241538-ZpjYkI5NcOvYW8vEUcPPpnncRq69NsuC-0-9d460449829def3e8f2beb3b01dcf186)
在笛卡儿坐标系下,建立量测方程:
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0034_0007.jpg?sign=1739241538-8oBjgdUHJvzoo6MOs0M3JQmVCZyduSuj-0-b574e94ec54777c3487773860bc114f2)
由此可利用传感器坐标转换过来的量测值,估计目标的真实位置。
3.2.2 二维情况
对于二维情况,通过极坐标到笛卡儿坐标的转换,第l部雷达的量测转换方法是
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0034_0008.jpg?sign=1739241538-D2ghJfrRLLS8kNQBhhMlSibTRtj3cq7N-0-cdb153fc5693ed65ba6a6063b6692c7b)
若方位角噪声的概率密度函数关于y轴对称,则对式(3.2-5)取期望得到
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0034_0010.jpg?sign=1739241538-WvhJygjB60iGh6th8uxmjTbwlvOMZuMw-0-14871f7d26b08cefafcf34ff79f49d96)
式中,
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0034_0011.jpg?sign=1739241538-om7aZUyLUGowtfA1KACI6THsPlwwdKM5-0-83f919f79d38c2a3b61ab0a983e0c5d5)
称为偏差补偿因子。可以看出,当λβ≠1时,式(3.2-6)给出的量测转换是有偏的。假定λβ≠0(至少对于单峰的或在[-a, a](a<π)上均匀分布的概率密度函数,这一条件成立),可以通过下式得到一种无偏量测转换方法:
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0035_0001.jpg?sign=1739241538-kMsOArkOB6PRkYHibGoS0wn0WrVcyYfv-0-16cc1a65782910c3068eca25ac3823f7)
由式(3.2-8)可以看出,量测转换偏差的本质是乘性的,并且依赖于方位角量测噪声余弦的统计特性。下面以雷达的量测值为条件求解式(3.2-8)的无偏量测转换所对应的协方差矩阵[91]。
量测模型可以重写为
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0035_0002.jpg?sign=1739241538-oR1YKHjtNEmIO6GUOb9qErVWMDXf8hUF-0-e2eb9717f0abb08b7002fece6bfe5e49)
转换后的量测误差为
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0035_0003.jpg?sign=1739241538-eTZHzzlXuCuld6UnmmX4fqPDppppCKuQ-0-abca040871ec0bcf306fc8986fe9c189)
相应的量测噪声协方差短阵为
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0035_0004.jpg?sign=1739241538-kJE60ege9e9h1f4Xl15PNXYSvmZ6jNhJ-0-822a7f65bc24dae2de67568d4556cadf)
对此,经典UCM方法给出的计算公式如下:
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0035_0005.jpg?sign=1739241538-UEOaDxiy3fqRDagO2V30SekYvpfwJD9o-0-0cd4cc1f2d9b7d46459130790b54ac73)
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0036_0001.jpg?sign=1739241538-MUggvPLT2L4Hfpad24HiRkne2lKfU76k-0-2cb47765f92f8fdd7a223c247ca7238d)
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0036_0002.jpg?sign=1739241538-AQ90ME2aOayKdNvdtM0FdX4fYwpmmNtw-0-148e7323504143461a23c1b310df6bb2)
式中,。
经典UCM方法因为只考虑单部雷达的量测转换后的协方差,忽略了雷达之间的互协方差,因此仅适用于单部雷达的场景。
3.2.3 三维情况
在三维球坐标系下,量测的径向距离、方位角和俯仰角分别为
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0036_0004.jpg?sign=1739241538-wzeIgIejpptyQ9Seouc6NWboUTzb3qES-0-3cbd26f1bf33a7b650072a95dfc66236)
式中,r、β、ε分别为目标真实的径向距离、方位角和俯仰角;、
和
分别为第l个传感器的量测噪声(l=i, j),且彼此独立,其均值均为零,方差分别为
、
和
。
三维情况下的无偏转换为[91]
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0037_0001.jpg?sign=1739241538-nKlaDyhKwTlDLv2R3ap1R5f6BS0fKP6V-0-6f781bcf05546d52f92c8c7acae629e5)
其中,
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0037_0002.jpg?sign=1739241538-ByWbzcGjKY3RW9gLlSNgCwGvvQh8WFAs-0-2812e417c0a20f077bd7aa5924abc8dd)
将式(3.2-16)重写为
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0037_0003.jpg?sign=1739241538-8ZaeztFriL8ry4paOlkIhK6TwuWiuuCy-0-cf5ac1a036bf2dd800a1b007ed38f20a)
其中,
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0037_0004.jpg?sign=1739241538-rzb1hFJwNXo1lnF5pIrD0s7uvQGeHO9g-0-cdc964bd1dbb7d776218eaec434d263c)
转换后的量测误差为
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0037_0005.jpg?sign=1739241538-FzOJS8euEKcaNb2ayLZarUdxVgY3c9As-0-cb7271f65c28da48cbac13618be3a2c0)
相应的量测噪声协方差矩阵为
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0037_0006.jpg?sign=1739241538-hp2ODzfE64SYy9P5Xk0h5O6jU72sWBm6-0-ba06316fc73375308db91e50170ad31b)
对此,经典UCM方法给出的计算公式如下:
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0038_0001.jpg?sign=1739241538-iPAP5AKxKP7zAYh1MTgttKpkbER0lGlQ-0-c4ed971c3268acc7a189fa6565afdcf3)
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0038_0002.jpg?sign=1739241538-WqNPiQ8ooaKkhG35ooZA7JrpjoqvQ74s-0-8216e07291fb4ae9dc6923c5390068f6)
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0038_0003.jpg?sign=1739241538-msVrLi8ZBH947esEK9gJPCkoSBNwtvYQ-0-5637b8ba8a611287f93aed7edace4061)
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0039_0001.jpg?sign=1739241538-3t7haAcCcwThxgS7jqP2BrawJarvPOZM-0-5e1d79fd06bb9b2147078b22b34f7161)
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0039_0002.jpg?sign=1739241538-h2oInQDMdMSvFQ4ZZqC4lPR7FxBuyjeD-0-e6f9554dd6e78a971a1b1a39a7c029bd)
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0040_0001.jpg?sign=1739241538-mA49RyzrEFqduRNlIPQvMOsSx3a9QLuJ-0-655f7d8c0a7a9594057bb82cf9e4b1f1)
其中,
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0040_0002.jpg?sign=1739241538-EZCNfx6a6slByOUk9XYnbdxRyjqYyjnR-0-8f493e1c0564ea99d11c71d0006dfd3a)
3.2.4 偏差补偿因子的计算
偏差补偿因子λβ、λε、和
可由方位角量测噪声
和俯仰角量测噪声
的概率密度函数来确定。当
、
都服从高斯分布时,有
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0040_0009.jpg?sign=1739241538-yZPmsuK2Y89QDKZOqnEzkuI1VhR0B1IU-0-7e1f12fcf338e137cd92f5961774a91b)
当、
都服从[-a, a]上的均匀分布时,有
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0040_0012.jpg?sign=1739241538-VaJBpGsz5ri5SVqhN4iU8FshATI7PTxQ-0-ceae09c05c108547ee0c901afb6b3945)