1.2.1 器件发展与分类
电力电子技术是以功率半导体器件技术及其应用为纲发展的。20世纪40年代发展的晶体管技术奠定了功率半导体器件发展的基础,60年代晶闸管的工业化应用推动了电力电子技术的迅猛发展。之后,70年代和80年代分别出现了功率MOSFET和IGBT,典型的功率MOSFET具有高开关频率、耐压低、大电流和通态电阻大的性能。与之相比,IGBT则是开关频率较低、耐压高和通态压降小。2000年前后开发了宽禁带材料如碳化硅SiC(silicon carbide)和氮化锗GaN(gallium nitride)器件,这两种宽禁带器件的主要特点是反向恢复电荷少、耐高温。总之,电力电子器件在向高开关频率、低开关损耗、耐高电压、大电流、耐高温、高功率密度技术方向发展。
从控制的角度,功率半导体器件是一种通过弱电信号触发器件强电信号导通或截止的信号转换器件。根据弱电信号控制强电信号的可控性,功率半导体器件可分为不可控型器件、半控型器件和全控型器件。其中,功率二极管是不可控型器件,它没有控制信号,导通或截止由其端电压决定。晶闸管是半控型器件,它的门极信号可使其触发导通,但是不能使其截止。功率晶体管、功率MOSFET和IGBT是全控型器件,它们的基极或栅极信号能够触发器件导通,也能使它们截止。
根据器件基极、门极或栅极的载流子工作机理,功率半导体器件可分为电流型和电压型触发导通器件。其中,晶闸管和功率晶体管属于电流型触发导通器件,而功率MOSFET是电压型触发导通器件,IGBT则是混合型触发导通器件。电流型器件的基极或门极需要流过一定宽度和强度的电流触发脉冲,才能使器件触发导通。它的驱动电路较为复杂,功耗较大。而电压型器件的栅极仅需电压信号驱动而使其导通或截止,器件的驱动电路简单且功率小。
从半导体材料角度,功率半导体器件可分为硅基材料器件和宽禁带材料器件。SiC和GaN半导体材料的禁带宽度是硅基材料1.12eV的3倍左右,击穿场强至少是硅基材料0.3×106V/cm的10倍,因此在耐压相同的情况下SiC和GaN功率半导体器件比硅基器件的晶元尺寸更小。由于载流子饱和漂移速度更快,宽禁带器件的导通电阻更小。SiC和GaN半导体材料耐热系数高,使得由它们制成的功率半导体器件的散热铅壳更小。更小的晶元和散热铅壳,使得宽禁带功率半导体器件的功率密度更大。而且,更小的晶元使得宽禁带功率半导体器件的寄生元件更小,具有更小的浪涌电流或浪涌电压,有利于器件开关速度的提高。同时,由于反并联二极管采用宽禁带材料基的肖特基二极管,二极管反向恢复损耗也更小,恢复时间更短。因此,宽禁带器件满足汽车对高功率密度和耐高温功率半导体器件的需求,它们在新能源汽车的电驱动、快速充电和DC-DC转换方面具有广阔的应用前景。