![离散数学及其应用(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/486/53252486/b_53252486.jpg)
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
1.3.3 对偶式
在1.3.1节所列的等价关系式中,公式2)~9)都是由两个公式组成的,这些成对出现的公式称为对偶式。对偶式的定义如下。
定义1.3.3 在仅含有联结词、∧、∨的公式A中,将其中的∧换成∨、∨换成∧、1(或T)换成0(或F)、0(或F)换成1(或T),其他符号不变,得到的公式称为A的对偶式,记为A*。
由定义可以看出,A*的对偶式就是A,也就是对偶式是相互的。
例如,p∨q和p∧q、和
和
都互为对偶式。由于
,而
和
互为对偶式,所以p↑q和p↓q也互为对偶式。
设A(p1,p2,…,pn)和A*(p1,p2,…,pn)互为对偶式,其中p1,p2,…,pn是出现在A和A*中的全部的命题变元,则
![](https://epubservercos.yuewen.com/E32CB5/31724634203265606/epubprivate/OEBPS/Images/23_14.jpg?sign=1739115425-IiyGEIYT1JcQozeK4Kh3WqAmUP8Ej0MJ-0-0d74c1890a4bce5005fa32bbb4e89e14)
例如,假设A(p,q)⇔p∧q,则
A*(p,q)⇔p∨q
而
![](https://epubservercos.yuewen.com/E32CB5/31724634203265606/epubprivate/OEBPS/Images/23_15.jpg?sign=1739115425-aUaoTDWrGyMTnGtgQ3JM5G3eXi9luYZa-0-b3494a97df255931101c4242c049b29d)
所以
![](https://epubservercos.yuewen.com/E32CB5/31724634203265606/epubprivate/OEBPS/Images/24_01.jpg?sign=1739115425-Gqx2WlmsfqowAMKG2Fmrfx5xRySyeq0R-0-3dc162bad337c59d55c8ffa6bfd5b9a5)
类似地,有
![](https://epubservercos.yuewen.com/E32CB5/31724634203265606/epubprivate/OEBPS/Images/24_02.jpg?sign=1739115425-mYjsfg5yGtG1vdR3jObEtVXz4A6lVKPC-0-2be62423368fd4900d86802c055e7005)
定理1.3.1 设A和B为两个命题公式,A和A*、B和B*互为对偶式,若A⇔B,则A*⇔B*。
证明 因为
![](https://epubservercos.yuewen.com/E32CB5/31724634203265606/epubprivate/OEBPS/Images/24_03.jpg?sign=1739115425-GYc4Ng1ZQKPMErUk7xzG3bWvUwCsungA-0-0eddc038f2e548603ce7fc62b542f1f3)
若
A(p1,p2,…,pn)⇔B(p1,p2,…,pn)
则
![](https://epubservercos.yuewen.com/E32CB5/31724634203265606/epubprivate/OEBPS/Images/24_04.jpg?sign=1739115425-iZMBQK5jEMhDV5hf9Iyz4zsUTCdn5UFn-0-9ca067780726d3deed7854e052d2e38d)
即
![](https://epubservercos.yuewen.com/E32CB5/31724634203265606/epubprivate/OEBPS/Images/24_05.jpg?sign=1739115425-HOALQeigx3FxtGlgjmjSOPCD0iUH2CSM-0-9d36701ada81cc85ca87a441a933f60b)
则
A*(p1,p2,…,pn)⇔B*(p1,p2,…,pn)
◀
例1.3.9 求公式的对偶式。
解 公式A的对偶式A*为
![](https://epubservercos.yuewen.com/E32CB5/31724634203265606/epubprivate/OEBPS/Images/24_08.jpg?sign=1739115425-gtlCVzKAtqUBUo2xksT6O81V40W8YC5m-0-bf3538953f541f99754a80722e472f56)
公式是重言式,而1的对偶式是0,所以,由对偶原理可以直接得知重言式A的对偶式A*是矛盾式。