![近代光学](https://wfqqreader-1252317822.image.myqcloud.com/cover/677/683677/b_683677.jpg)
6.3 亥姆霍兹和基尔霍夫积分定理[1],[3],[4]
6.3.1 亥姆霍兹方程
对于频率为ν的单色光波,其场量可写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0205_0005.jpg?sign=1739285907-7wJ9iAjmKoEqN947OwbOxtdj4yganHeo-0-f73d7b5357f15786aeb5cde04a77b091)
U(P)和φ(P)分别为振幅和初相位。引入复振幅,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0205_0006.jpg?sign=1739285907-4U6jFMkMuRx8DiwwIiMv9FJR1VadQPfp-0-55cb3b58978b8c8e29894c138de3fe05)
则可将式(6.3-1)表示为场量复数形式(P)exp(-i2πνt)的实部,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0205_0008.jpg?sign=1739285907-DNc3ptz73LjffAp3cFtq5VpiDsT8hyXr-0-b96194931464c35ad705eb888e008f71)
光波场u(P,t)在无源点满足标量波动方程
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0205_0009.jpg?sign=1739285907-hR8PmSPl2suIK0lNGjdrjgxiNKN5FdKx-0-fc3c9e1434899e42286dba2eca88ab4e)
对于单色光,其场量对时间的关系确定,其复振幅满足的空间分量微分方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0205_0010.jpg?sign=1739285907-NxzSSGJwbX4xkUeDbMr1tzOt8q7CP9Dh-0-06730157a1b1e530006d1b7c4f04bae4)
其中,k为波数,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0205_0011.jpg?sign=1739285907-1bipBglXHCyCjQmukKj0VBboEQcvC4vA-0-94d7330196b461c778984f38b7163393)
式(6.3-5)称为亥姆霍兹方程。光波场中任意一点的场值即亥姆霍兹方程的解,这个解可以通过基于格林定理的积分定理来获得。
6.3.2 格林定理
假设S为封闭曲面,G、U分别是空间位置的复函数,且在S内和S上单值并连续,并存在一阶和二阶偏导数。用G、U构造一矢量F
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0001.jpg?sign=1739285907-s23O2oXC6dQigYzkDhWKIUScfHVCfHxT-0-a42b7526c7b2f00cb1e74dc54b0b8e44)
则
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0002.jpg?sign=1739285907-4bMZNh4ryQ2wHsM6xRjKgqSEkq8zZ91c-0-42bd111e273cf0a65fd60a5747234049)
应用高斯定理
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0003.jpg?sign=1739285907-hdAVIRGWWJVFgTEI73yIdcncKO6QhY1F-0-aff97d77caeecc13e2185247fae6c6a2)
上式右边有负号是因为n取S内法线矢量的缘故。于是有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0004.jpg?sign=1739285907-KxUJUS1M4vZKHYsO2NMFXuBq6Tplo2x5-0-4f1eeb56b6c159f10146567839b5a79b)
格林定理是标量衍射理论的数学基础,只要选择合适的格林函数G和封闭曲面S,就可以用格林定理来分析很多衍射问题。
6.3.3 亥姆霍兹和基尔霍夫积分定理
为了利用格林定理来求解亥姆霍兹方程,需要构造格林函数G。设观察点位于P点,S1为包围P点的任意封闭曲面,如图6.3-1所示。
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0005.jpg?sign=1739285907-7VHaLIUKEYbnWRSqE6dnIDa1jySOLCx9-0-601333471cfae6712b635a72c1c905b3)
图6.3-1 积分区域
令U为单色光场的复振幅。假设G表示由P点发出的同频率发散球面波,则对任意点P1有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0006.jpg?sign=1739285907-qtu6t6jv5CG7xXjMaGNCBMDrG7FGMLaT-0-4edb6966b3b5e6f47b978187a1aaeca3)
r为从点P到点P1的距离。若要运用格林定理,函数G及其一阶、二阶导数必须在封闭曲面包围的区域V内是连续的,但在图6.3-1中封闭曲面S1内,式(6.3-11)所定义的格林函数在P点为奇点,不满足在区域V内连续的条件。因此需要将
P点从积分区域排除,为此以P点为球心,ε为半径作一小球,球面为S2。曲面S1和球面S2所围的区域为V',则在区域V'内,G(P)满足亥姆霍兹方程,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0007.jpg?sign=1739285907-r1sh7kgFHzsRrASvnA4RGuNK9EylFO2J-0-deba7466232e854a873f4c4104896938)
U也满足亥姆霍兹方程,根据格林定理有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0008.jpg?sign=1739285907-WFVBI8asWfSDpc9uo5wzUBeq3takpaHz-0-c5996f06118e3b05c14103edb5ee1fd0)
显然,在曲面S2上,内法线沿径向,于是有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0206_0009.jpg?sign=1739285907-PmYTZHPsxnNz8hDcn8d5jEwA4PLjv5eA-0-0bcc622d747dbd2b71421f550bfb0420)
式中,dΩ表示立体角,Ωε为S 2面相对P点所张的立体角。将式(6.3-11)代入上式可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0207_0001.jpg?sign=1739285907-aQn7eCeWMdqVzpV4aGtq1EQOdU1hUTja-0-a395d73f3d4b0778a10fe92e32dc2a36)
注意,在得到上式过程中用到条件及
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0207_0003.jpg?sign=1739285907-sMO63eDeMAEnARI7c7la1zGxJQI8pdYP-0-e19ab0e364903031ca6e5ee3553491d9)
P1为S2上的任一点。假设ε为无限小量,并且函数U及其导数在P点周围是连续的,则式(6.3-15)右边第二个积分趋于零而第一个积分变为4πU(P)。因此
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0207_0004.jpg?sign=1739285907-HPGYOYoP2XNHeKBy48hRkVwwlvFWw4CC-0-766726755e7932f6def04e830ee20eca)
将上式代入式(6.3-13)得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0207_0005.jpg?sign=1739285907-4YvAYJS9VOlnMThDghcJXD9XGLddU2ae-0-6976a42570c12853aee3b3fd6e76ce51)
或者
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0207_0006.jpg?sign=1739285907-bKfmTu7itNSqJoDTkJ2lnXrrgYJPdKhD-0-6e5dde33a793bc57c36ebde9a4fe5db4)
式中,r0是位矢r的单位矢量,式(6.3-18)为亥姆霍兹和基尔霍夫积分定理,它给出一个重要结果:如果某一函数U满足亥姆霍兹方程,且函数U及其法向导数在某一封闭曲面上已知,则该函数在曲面内任一点的值都能够确定。