![近代光学](https://wfqqreader-1252317822.image.myqcloud.com/cover/677/683677/b_683677.jpg)
6.4 平面屏幕衍射的基尔霍夫理论[1],[4]
如图6.4-1所示,在一个无限大不透明屏上开有孔径A,用一个点光源照明孔径,点光源在P0点,现在希望计算在孔径另一侧P点的场。假设孔径在xy平面内,以P点为中心,R为半径作一个球,该球在屏上截面为圆,截圆由两部分组成,一部分为孔径A,另一部分是在不透明屏上的那部分B。
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0207_0007.jpg?sign=1739532966-0MEkTAbJbAKRvCmIj1zORvdpeyWwgdu4-0-06e7ac81f3162f7c509e164e22a045d2)
图6.4-1 平面屏幕衍射的基尔霍夫理论图
下面将利用亥姆霍兹和基尔霍夫积分定理来计算P点的场,而选择的积分曲面S包括:①球面C;②被照明的孔径A;③屏上未被照明部分B。这样,由式(6.3-18)得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0207_0008.jpg?sign=1739532966-OscsK1d0BnJF3cgtS9QT5g0uaG2nej3M-0-71cfc7be21e36c9b0b91fe24c8a197ab)
下面证明上式中C项随R→∞而趋于零。在曲面C上,n=-r0,r=R,因此有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0208_0001.jpg?sign=1739532966-nZPsVmLbf2GUEm7L1GA7TYA9dU2sc5uR-0-944866a414442c7e82d0395c825dc117)
式中,ΩC为球面C对P点所张的立体角。如果U满足
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0208_0002.jpg?sign=1739532966-2Z4IFLx5xUx4POgbQohd92cevyUbinzB-0-b914ec039fd6df521eecff054148601d)
则在球面C上的积分为零。式(6.4-3)称为索末菲(A.Sommerfeld)辐射条件。这样只需计算A、B区域的积分值即可,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0208_0003.jpg?sign=1739532966-ChgOQxo5Tum5YFF7JY0ytFEqw18imoUl-0-3a4e5f3c7dbb6af50405802a3b41bf49)
为此,假设:
(1)在曲面B上,即刚好位于屏的不透明部分后面的积分区域,场U及其导数为零;
(2)在曲面A上,即屏开孔部分积分区域,场U及其导数与无屏时的值相同。
上面所述的假设称为基尔霍夫边界条件。应用这些边界条件,则有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0208_0004.jpg?sign=1739532966-1YZkswcXUH8xfnQwLicTd4hYLx8xNPjy-0-c1a2b0995e1f74a94dca58a8a6d1c553)
假设从孔径A到P点的距离比波长大得多,则可将上面的积分进一步简化。在这个近似下有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0208_0005.jpg?sign=1739532966-58vVuebyXf7Iv4dyexcwCUWg0ntx9piV-0-d2d0964384fd568602a438a09c54dbd0)
于是得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0208_0006.jpg?sign=1739532966-4aH9dXrlK2VHjmxf2rH76CDNMUiqWqKL-0-975953d49f78e703246ef81dbce5e627)
其中,α是矢径r与n之间的夹角。假设孔径A用从P0点发出的球面波照明,并假定满足基尔霍夫边界条件,则有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0208_0007.jpg?sign=1739532966-qqYDtwvk9PSuzvQTfDLGRm4OL1Y6HvEl-0-4b9a6ecb1cd783c85f72adff3edc94eb)
式中,ρ表示从P0点到孔径A上任一点的距离,于是有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0208_0008.jpg?sign=1739532966-INoWUexlFnJTxp5SzzwMapADjd0ByCqb-0-423aee020d959d65b2172c46fba3dd9d)
其中,假设kρ≫1,即光源到孔径的距离比波长大得多;式(6.4-9)中,ρ0是矢径ρ的单位矢量,β是ρ与n之间的夹角。将式(6.4-9)代入式(6.4-7)得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0208_0009.jpg?sign=1739532966-1HZ3bGyH5bP1BkPlCsOqGBAlGsl0BidE-0-23ae64d1e3d765d50a0de8f19233f260)
上式称为菲涅耳-基尔霍夫衍射公式。式中,因子cosβ-cosα称为倾斜因子,因为孔径的线度通常很小,故α、β分别近似为π、0,于是有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0208_0010.jpg?sign=1739532966-2jIXcwFsAbO8aT4xdJjWWjPpRA7NMTex-0-071c64ee6180e4f99fdecdaed6c682a7)
在很多情况下,孔径的线度很小,r与ρ在整个孔径A上无显著变化,因此被积函数的分母中r、ρ可用r'、ρ'来代替。r'、ρ'不妨分别选择为从孔径内的原点到P和P0点的距离。于是,式(6.4-11)可写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0208_0011.jpg?sign=1739532966-o67e1SJtpzXOp0R1BkOCXbc69riIbVTo-0-c3f586a7a1921f2ca04d56c86862a3a0)
菲涅耳-基尔霍夫衍射公式(6.4-10)中关于r与ρ是对称的,所以P0处点光源在P点产生的场与P处的点光源在P0点产生的场相同。这个结论称为亥姆霍兹互易(或可逆)定理。